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ABSTRACT

Let Z be a subset of the spectrum of a local ring R stable
under specialization and let N be a d-dimensional finitely
generated R-module. It is shown that H%(N), the dth local
cohomology module of the sheaf associated to N with support
in Z, vanishes if and only if for every d-dimensional
p € AssgN, there is a q € Z such that dim R/(qR + p) > 0.
Applying this criterion for vanishing of H%(N), several con-
nectedness results for certain algebraic varieties are proved.

3687

DOI: 10.1081/AGB-120005813 0092-7872 (Print); 1532-4125 (Online)
Copyright © 2002 by Marcel Dekker, Inc. www.dekker.com



3688 DIVAANI-AAZAR, NAGHIPOUR, AND TOUSI
1. INTRODUCTION

It was discovered by J. Rung!" that local cohomology yields
connectedness results. Since then, several authors have used local coho-
mology as a powerful tool in their investigation of connectedness of alge-
braic varieties (see e.g., 30~%). What is used from local cohomology are the
Lichtenbaum-Hartshorne vanishing theorem and the Mayer-Vietoris
sequence. Several proofs for the Lichtenbaum-Hartshorne have been given
(see e.g.*). On the other hand, G. Lyubeznik!"¥ extends this result to
¢'tale cohomology. He also has shown the following generalization of the
Lichtenbaum-Hartshorne vanishing theorem for a locally closed subscheme
Y of a separated scheme of finite type over a field X. Let d = dim X. Then
for all quasi-coherent sheaves F on X, H%(X,F) = 0, if and only if every
connected component of the preimage of Y in every top-dimensional irre-
ducible component of the normalization of X,.; is non-proper (see '%}).

Recall that a subset Z of Spec R is stable under specialization (s.u.s. for
short) if V' (p) C Z, whenever p € Z. One can see easily that there is a one to
one correspondence between the s.u.s. subsets of Spec R and the families of
supports of Spec R (see I P& 2181y for the definition of family of supports). In
the case X = SpecR, we focus our attention on s.u.s. subsets of X and prove
the Lichtenbaum-Hartshorne vanishing theorem for this class of subsets of X.

Theorem 1.1. Let N be a d-dimensional finitely generated module over a local
ring (R, m) and let Z be a subset of SpecR stable under specialization. Then the
following statements are equivalent:

G N =0 A
(ii) For any p € AsspN, with dim R/p = d, there is q € Z such that
dim R/(qR +p) > 0.

This result will be proved in 2.8. In the proof of 1.1, we use the fact that
there is a one to one correspondence between the s.u.s. subsets of Spec R and
the full systems of ideals of R (see 3.1). In this article we use this fact several
times. A non-empty subset @ of ideals of R is called a system of ideals if,
whenever a, b € @ there exists ¢ € ® such that ¢ C ab. A system of ideals @ is
called full if, whenever a € ® and b is an ideal of R with a C b then b € ®.

Our technical tool for proving 1.1 is the following lemma.

Lemma 1.2. Let ® be a system of ideals of a local ring (R, m). For any two
finitely generated R-modules N and M, there is a functorial isomorphism

Homg (zv, () (aM <m>)> =~ (1) (aHomg (N, M) ‘pomg (M) (1))

acd ac®
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Here for two R-modules C C M, the union (U C 3 1) is denoted'by
C ;i (m). We prove 1.2 in 2.2. For an R-module M, let (m)M := N;zom'M.
By applying 1.2, we find the following description of Hg(N):

Hy(N) = H{ (N)/ Y (m0)(0 2y ) 1),

acd

where @ denotes the system of ideals of R corresponding to Z (see 2.6 for the
proof of this result). This result is not only used in the proof of 1.1, but also
it immediately implies that H¢(N) is an Artinian R-module. The Artinianess
of HJ(N) is the main result of .

In section three, by applying the generalization of the Lichtenbaum-
Hartshorne theorem, we deduce several connectedness results. Mainly, we
are able to generalize the known results for the closed subsets of the spec-
trum of a local ring to its stable under specialization subsets. In particular,
we deduce the following far reaching generalization of Faltings’ con-
nectedness result (see ¥, it also extends.!!: Theorem 3.3]

Theorem 1.3. Let the situation be as in 1.1. Suppose that any minimal prime
ideal of AssyN is of dimension d and that HﬁI(N) is an indecomposable

R-module. Then Z N Supp(N)\{m} is connected provided H,(N) =0 for
i—d—1,d

All rings considered in this paper are assumed to be commutative and
Noetherian (with identity).

2. THE LICHTENBAUM-HARTSHORNE VANISHING
THEOREM

The purpose of this section is to give an explicit computation of H4(N)
in terms of a quotient of H¢ (N) and, in the same way, to clarify equivalence
of the topologies involved. The main results are 2.6 and 2.8.

We shall use the following result in the proof of proposition 2.2, which
is in turn our fundamental tool in this section.

Lemma 2.1. Let (R,m) be a local ring and ® a system of ideals of R. Let
N, 0; = 0 be a minimal primary decomposition of the zero submodule of the
finitely generated R-module N. Then

N @V () = () 2.

acd p;eT

where T = {p; € AssgN : there exists a € ® such that dimR/(a + p;) > 0}.
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Proof. Set Q = AssgN\T and ¢ = Np,cap;. There is an integer / such that
/N C Np,c0Q;. For each a € @, it follows that the ideal ¢ + a is m-primary
and so

aN sy (m) =aN iy (c+a) =aN :y () 20y () 2 [ O

p;eT
Therefore Np.er Qi € Nacan (AN ty (M1)).

Conversely, let x € Nqeo(aN :y (m)). Taking p; € T, there is a € ®
such that Rad(a + p;) £ m. Hence we may choose a prime ideal g such that
a+p; C g m. Foragiven n € N, we have m'x C a”N for sufficiently large
integer /. It turns out that x/1 € a”Ng, for all n € IN. Therefore x/1 = 0in N,
by Krull’s intersection theorem. Hence sx =0 for some s € R\p,. This
implies x € Q;. Therefore x € Ny.cr O;. O

The first author would like to thank Professor Peter Schnezel who
pointed out that 2.2 holds for the special case ® = {a"},,.

Proposition 2.2. Let (R, m) be a local ring and ® a system of ideals of R. Let N
and M be two finitely generated R-modules. Then there is a functorial
isomorphism

Homg (N, () (@M :y <m>> = () (aHomg(N, M) tpomg(n.m) (1))

acd acd

Proof. It is well known (and can be checked easily) that if N} ,Q; is a
minimal primary decomposition of the zero submodule of an R-module L,
with Q; a p,-primary submodule, and S is a multiplicatively closed subset of
R, then

N 2=J0O:ws).

p;iNS=0 se§

Set

T = {p € AssgM : there is a € @ such thatdimR/(a +p) > 0} and S

=R\ Jp.

perT
Therefore 2.1 implies that Ngeg(aM 1y (M) = Uses(0 1 5), and

() (@Homg(N, M) :tomevny (1) = [ (0 Home (v 5)-

acd seS
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Note that Assg(Homg(N,M)) C AssgM as one can see easily. Since M and
Homg(N,M) are Noetherian, there is ¢ €S such that (0:,¢) (resp.
(0 :‘Homgwar 1) is the largest element of the family {(0:y 5)},cs (resp.

‘Homy(vu) $)}ses)- Now, the claim follows by the functorial
isomorphisms

HomR(N, (0 M t)) = HOHIR(N Rpr R/RI,M) = (0 ‘Hompg (N,M) t). |
Next let us fix some notation.

Remark and notation 2.3. (i) Let a be an ideal of R and N (resp. A) a
Noetherian (resp. Artinian) R-module. For a submodule M of N we denote
the ultimate constant value of the increasing sequence

MCM:yaCM:ya®C---CM:ya C---

by M :y (a). Also, we denote the least element of the sequence {a’4},_. by
(a)A.
(i) Let (R,m) be a local ring. Denote the faithfully exact functor
Homg (-, E(R/m)) by (-)*. Let M be a submodule of an R-module N. Fol-
lowing the notation of [7:854, the submodule {f € N*: f(m)=
0, for all m € M} of N* is denoted by M*. Also, for a submodule K of N*,
we denote the submodule

{meN:f(m)=0, forall f € K}

of N by K*.

(iii) Let (R,m) be a complete local ring and M a submodule of a
Noetherian R-module N and let K be a submodule of N*. Then it follows
from 7 %54 that M*# = M and K* = K. Moreover one can check easily
that, if {K;};cx is a family of submodules of N* then,

(Z)Ki)“ = (K"

ieA ieA

We shall use the following lemma in the proof of 2.6.

Lemma 2.4. Let (R, m) be a complete local ring and N a finitely generated
R-module. Let ® be a system of ideals of R. Then

(i) (NacoaN :y (M))" = N* /37 o (m)(0 :x- a).
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(ii) If ® # {R}, then N is ®-adically complete (i.e., the natural map
N 22 limgeq N/aN is an isomorphism).

(iii) If ® # {R}, then the inverse system {N/aN},.q with the natural
induced maps denes an inverse system {Ho (N/aN)},.q such that

@Hgl(zv/azv) =~ () (aN :y (m)).

ace® acd

Proof. (1) Let M = Ngeo(aN :y (m)). The injection M — N induces the
natural epimorphism N* — M*. But the kernel of this map is M” as can be
seen easily (u, A are as in 2.3). On the other hand, we have

M~ (ﬂ(aN :N <m>>“‘>i= KZ (W <m>)A>T

acd acd

= (aN :y (m))".

acd

It turns out by 7 Theorem 521 "4pa¢

(aN =y ()" = (m)(aN)* = (m)(V* :y- a)

for all a € ®, and hence M* =) _(m)(0 :y- a), because N* = 0. This
finishes the proof of (i).

(i) Since N* is Artinian, it follows that N* = U;ex (0 :y+ 1t). For each
i € N, there exists a € ® such that a C m‘. Hence

N* = (0:y- a) 2 lim Homg(R/a,N").(1)

acd aed
Because
Homg(Homg(R/a,N*),E(R/m)) = R/a @ N**

and N** = N, by applying (.)" to (1), we deduce that N = limaeo N/aN as
required.

(iii) Let b be a proper ideal of R such that b € ®. It is easy to see that
Naco AN C N> "N, Hence, by Krull’s intersection theorem, Ngep aN = 0.
Hence, in view of (ii) the proof is a straightforward modification of the
pI‘OOf of [16, Lemma 2.3]. O
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Let Cr denote the category of all R-modules and R-homomorphisms.
Let @ be a system of ideals of R. Such a system of ideals ® determines the
®-torsion functor T'g(-) : Ck — Cg. This is the subfunctor of the identity
functor on Cg for which I'g(M) := {x € M : ax = 0 for some a € @}, for
each R-module M. For each i€ Ny, let Hy(-) := limgeq ExtR(R/I) ), a
functor which (see [+ Remarks 1371y i¢ naturally equivalent to the i-th right
derived functor of I'(-). We summarize some useful properties of the
functors Hj(-) in the following remark.

Remark 2.5. (i) For each i € N, the functors H: ( ) and limaeq H () (from

Cr to itself) are naturally equivalent (see ! ). (Here H. () is the
i-th local cohomology functor with respect to a.)

(ii) Let f : R — R’ be a homomorphism of Noetherian commutative
rings. Set ®R' := {aR’' : a € ®}. Then @R’ is a system of ideals of R". For any
i € Ny, it follows from the independence theorem for local cohomology™*
Theorem 4211 and (i) that Hi (M) = Hi . (M), for any R'-module M.

Now, we are ready to state and prove the main result of this section.
This result extends the main result of the third section of I (see [
Theorem 3.2y " Also it generalizes Bijan-Zadeh’s result concerning Artinianess
of generalized local cohomology modules (see [> Theorem 311y

Theorem 2.6. Let ® be a system of ideals of (R, m) such that ® # {R}. For a
finitely generated R-module N, there is a functorial isomorphism

HY(N) 2 HAW) | 3 ()0 g )

acd

where d = dim N. In particular HS(N) is an Artinian R-module.

Proof. Assume that (R,m) is a d-dimensional complete Gorenstein local
ring. It follows from [ Propoesition 2.1 ¢hq¢

(H§(N))" = (Hg(R) ©r N)" = Homg (N, Hi (R)").

Hence it turns out, by the Local Duality Theorem (see e.g. [* '), that

(H§(N))" = Homg [ N,lim(Extj(R/a,R)"

acd

~ Homg | N, llmHm(R/a)

ac®
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Therefore 2.4(iii) and 2.2 imply that

(HY(N))* = Homyg (N, ((a: <m>)>

acd

= () (aHomg(N, R) ‘omg (nr) (11)).

acd

This yields that HZ(N) is Artinian, and so by applying 2.4(i), we deduce that
Hd(N) m( )/Zae®< )(0: “HE (N a), because HOIIIR(N,R)* = HgI(N)’ as
follows from the Local Duality Theorem.

Finally, we treat the case of an arbitrary local ring (R, m). To do so,
put R;:=R/AnngN. By the Cohen structure theorem there exist a
d-dimensional complete Gorenstein local ring S such that R, = §/b for a
certain ideal b of S. For any ideal a of R, let a’ denote the preimage of aR; in
S. Let W be the set of all finite products of elements of {a’ : a € ®}. Then it
is easy to see that W is a system of ideals of S and that the system of ideals
®R, := {aﬂl :a € @} is cofinal in WR,. It follows from 2.5 (ii) and > bemma
23 @ ot

HG(N) ®r, R 22 Hy, (N) = Hy, (N) 22 HG(N).

Since H(N) is an Artinian S-module, by the first part of the proof, it
follows that HgR (N) is Artinian as an R;-module and therefore HY(N) is
an Artinian R,-module. Consequently, HY(N) ®g, Ry =2 HL(N). Therefore
the situation reduces to the case where the underlying ring is local com-
plete Gorenstein of dimension d, and so the proof is complete by the first
part.

Now let Ny and N, be two d-dimensional R-modules. Set R; = R/
(AnngN; N AnngN,). Then R is a d-dimensional Noetherian ring. Let S be a
d-dimensional complete Gorenstein ring such that R; = §/b for a certain
ideal b of S. Thus, we can use R; and S for both N; and N, in order to
proceed as in the previous paragraph. Therefore the above isomorphism is
functorial. O

Corollary 2.7. Let the situation be as in 2.6. Then

Attfz(Hg(N)) ={pre ASSRZV :dimR/p = d and Rad(aR + p)
= mR, for all a € ®}.
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Proof. Let (-)* denote the functor Homp(-, E(R/m)). Then HY
HY (N) by Matlis duality, so 2.4(i) implies that

m
Hg(N) / )0 2y vy @)
(IE(D .

(ma m (N)* <1II>>¥.

(V)" =

So, we have

Atty(Hg(N AssR< () AHE(N)" 2 <m)>.

acd

AlSO, by[4, Theorem 7.3.2]’

AsspHE (N)" = At HYE (N

(V) ={b € AssyN : dimR/p =d}.

Consequently, the claim results from 2.1 and the following easy observation.
Let M be a finitely generated R-module and let 0 =N?_;0; be a minimal
primary decomposition of the zero submodule of M. Set L =N ,0;, for
0<m<n Then0=n7, (LNQ;)isaminimal primary decomposition of
the zero submodule of L such that Rad(LNQ; ;g L) = Rad(Q; x M). O

The following result extends the Lichtenbaum-Hartshorne vanishing
theorem to generalized local cohomology. In view of 3.2, this result
implies 1.1.

Theorem 2.8. Let @ denote a system of ideals of a local ring (R, m) such that
® £ {R}. For a d-dimensional finitely generated R-module N, the following
conditions are equivalent:

() HyN) =0
(11) m( ) Zaed)< >(0 “He (N) Y )
(iii) Foranyp € Ass ;N with dim R/p = dim N, there is a € ® such that
dim R/(aR 4 p) > 0.
(iv) Forany a € ® there is b € ® such that VK :x, (M) C aKy, (here
Ky = (H%(N))" is the canonical module of N )

m

Proof. First we observe that the equivalence of (i), (ii) and (iii) follows from
2.6 and 2.7. Note that for an Artinian R-module 4, we have 4 = 0 if and
only if Attg(4) = 0.
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To complete the proof, it is enough to show the equivalence of (iii) and
(iv). Set M := H%(N)". As we have mentioned in the proof of 2.7,

Ass;M = {p € Ass;N : dim R/p = d}.

Suppose (iv) holds. Then Ngep(aM 1 (1)) C NgeoaM. The second term is
zero by Krull’s intersection theorem and, so (iii) holds by 2.1. Let (iii) hold.
For a given a € @, the subset

Y-{bed:bCal

of @ forms a system of ideals of R. Since for any b € @, there is a ¢ € ¥ such
that ¢ C ab, we can and do replace ® by W. Hence, by 2.1,

() (0M 2y (m)) = 0.

bev¥

Now, because the module aM :j; (n1)/aM has finite length, (iv) follows from
the following proposition. O

Note that 2.8 generalizes [>- Corollary 341

The following proposition extends a version of Chevalley’s theorem
which is proved in 4 bemma 3.3]

Proposition 2.9. Let (R, m) be a complete local ring and M a submodule of a
finitely generated R-module N. Let {N,-}/-GJ be a collection of submodules of N
such that for each j,k € J, there is | € J with Ny C N; N Ni. Assume that the
family {M + N;},.; has a minimal element. Then there is jo € J such that
Njy € M +0jes N;.

Proof. Replacing N by N/Mje; N;, we can assume that My N; =0. By
assumption, there exists & € J such that M + Ny is a minimal element of the
family {M + N;},.;. In fact the hypothesis on {N;},. ; implies that M + Ny is
the least element of this family. Hence M + Ny = Njey (M + N;). To com-
plete the proof, it is enough to show that this intersection is equal to M. To
this end, note that if M, and M, are submodules of N, then
(M, + M,)* = M 1 M%. Now, by 2.3(iii),

(VM +N) = (Y +N)™ = (Z(MHW)

= (Z (M*min)) .

jel
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The hypothesis on {N;},., implies that

> (M NN =M 0 (UN}).

jeJ jeJ

On the other hand, since by 2.3(iii), (Uies N/)" = Mjes N; = 0 = (N*)", it
follows that Uje; N/ = N*. Therefore ‘

(M +N;) = (M NN = M. O
jeJ

3. CONNECTEDNESS THEOREMS

In this section we examine connectedness of certain subsets of Spec R.
In fact via the generalized Lichtenbaum-Hartshorne vanishing theorem and
the generalized Mayer-Vietoris sequence (see 3.4), we are able to extend
some previously known connectedness results. To this end we recall some
notation and definitions for use in the sequel. Recall that a subset Z of
SpecR is stable under specialization (s.u.s. for short), if whenever p € Z and g
is a prime ideal of R with p C ¢, then q € Z. A system of ideals ® is called full
if, whenever a € ® and b is an ideal of R with a C b, then b € ®. The fol-
lowing result illustrates a close relationship between full systems of ideals
and s.u.s. subsets of R (see e.g., 18 Lemma 2.3])

Lemma 3.1. The maps ® — V(®) := UgeoV(a) and Z — F(Z) :={b: b is
an ideal of R with V(b) C Z} are inverse bijections between the set of full
systems of ideals of R and the set of s.u.s. subsets of Spec R.

For a s.u.s. subset Z of X = Spec R, let I'z(X,-) denote the section
functor with support in Z, from the category of sheaves on X to the category
of abelian groups. We denote the right derived functors of I'z(X,.), by
HL(X,.),i > 0. These are called the cohomology groups of X with support in
Z. Specially for an R-module M, the R-module Hj(X,M) is denoted by
H(M), where M denotes the sheaf associated to M on X (for more details
about the cohomology of sheaves see ['® ™)) The following, which can be
deduced by 2.5(1), [ page 2191 gpq 0. Ch.3. Ex330) g another connection
between the notion of “s.u.s. subsets” and that of “full systems of ideals”.

Lemma 3.2. Let Z be a s.u.s. subset of Spec R and ® be its corresponding full
system of ideals (see 3.1). Then for each R-module M, the R-modules H',(M)
and Hi (M) are isomorphic.
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In the sequel we shall use the following version of Mayer-Vietoris
sequence, which can be proved by a slight modification of the proof of *
3231 For presenting this result, we need the following remark.

Remark 3.3. (i) There is another definition of system of ideals, [ Pefinition 2.1.10]

which obviously coincides with our definition. Let (7, <) be a (non-empty)
directed partially ordered set. A system of ideals of R over 7 is a family ® =
{ai};ca of ideals of R satisfying the following conditions:

1) if i,j € I withj<i, then a; C a; and,
2) for all i, je€ I, there exists k€[l such that k>ik>j and
a; C a;qa;.

(i) Let ®; = {a;},.; and @, = {b;},., be two systems of ideals of R. It
easily can be checked that ®; + @, = {a; + b;},., is a system of ideals of R.
Next, we show that ®; N ®, := {a; N b;},, is also a system of ideals. In view
of [ Proposition 3.L.1GI] 4 4 the fact that @@, := {ajb;},c; 1s a system of ideals,
it is enough to show that for each i € /, there isj € I such that a; N b; C a;b;.
To this end, note that for a given i € I, by the Artin-Rees lemma, there exists
¢ € N such that a” N b; = a’~“(a$ N b;) for all m > ¢. Hence

C[l!+c N b;+c - C[I!+c n bl’ = ai(af n b,) - C[l'bl'.

Now, there is j € / such that a; C a}“ and b; C bl.l *¢. Consequently,
a;Nb; C a;b;, as required.
(iii) For a system of ideals ® = {a;},., and an ideal b of R, put

@y = {a; 4+ 0" : (i,n) € I x N} and ®° := {a,b" : (i,n) € [ x N}.

With pointwise ordering, the set 7 x IN becomes a directed partially ordered
set. It is easy to see that @, and ®° are systems of ideals and that V(D) =
V(®)NV(b) and V(@) = ¥(®) U V(D).

Lemma 3.4. Let ®; = {a;},.; and ®y = {b;},.; be systems of ideals of R. For
each R-module M, there is a functorial long exact sequence

. — Hy,g,(M) — Hy, (M) & Hy, (M)

s Hly g, (M) — Hi Ly (M) — ..

Now, we are ready to establish our first connectedness result. Let @ be
a system of ideals of R and NV a finitely generated R-module. We shall denote
min{grade(a,N) : a € ®} by grade (®,N). Since Hy,(N) = lim _, qep HL(N),
it follows that Hi(N) = 0, for all i < grade(®,N).
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Proposition 3.5. Let N be an indecomposable finitely generated module over a
local ring (R,m). Let Z be a s.u.s. subset of Spec R such that grade
(F(Z),N) > 1. Then the space Supp N\Z is connected.

Proof. Taking Z' := Z N Supp N, we have Supp N\Z = SuppN\Z'. Thus we
may and do assume that Z C Supp N. Note that, in view of 3.2 and 2.5(ii),
H,(N) = H,,(N) forall i>0 and since grade (F(Z),N) > 1, we have
that Supp N\Z # 0. Suppose Supp N\Z is disconnected. Then there are
ideals a,b O AnngN with the following properties:

i) ZUV(a)<Supp N and ZU V(b) < Supp N,
i) V(a+Db)C Z; and
iii) ZUV(anDb)= SuppN.
Let F(Z) = ®. Then the first part of the Mayer-Vietoris sequence
yields an exact sequence

0— ngh (N) — Hga(N) & Hy, (N)
— g)"ﬂ([)b (N) — H(%)(‘_'_(D[Y (N)

The condition (ii) together with 3.3(iii) and 3.1, imply that ®® + ®° = F (2).
Thus, it follows that Hy, .(N) = 0 for i = 0, 1. Hence Hg,(N) @ Hy, (N) =
Hg"m o (V). From the condition (iii) and 3.3(iii), we deduce that V(®N
®") = Supp N. Hence HY, o(N) = N andso Hy.(N) & H), (N) = N. Because
of the indecomposability assumption on N, it follows that HY(N) = N or
ng (N) = N. This implies that either V(®") = Supp N or V(®”) = Supp N.
Therefore, by 3.3(iii), Z U V(a) = SuppN or ZU V (b) = Supp N. Hence we
arrived at a contradiction, by condition (i), so Supp N\Z is connected.

Note that 3.5 extends [> Femma 431 15 the rest of this section, we use
MingM (resp. AsshgN) to denote the subset {p € AssgN : p is minimal in
AssgN} (resp. {p € AssgN : dimR/p = dim N}) of AssgN.

Theorem 3.6. Let Z be a s.u.s. subset of SpecR and N a finitely generated R-
module with d = dim N. Suppose that Min zN = Assh N and that H.,(N) is an
indecomposable R-module. Then Z N Supp (N)\{m} is connected provided
H,(N)=0fori=d—1,d

Proof. First of all note that, since H%(N) = 0, it follows that Z N Supp (N)\
{m} # (). Suppose that Z N Supp (N)\{m} is disconnected. Then there are
ideals b, ¢ O AnngAN such that for X = Z N Supp N, the following conditions
are satisfied:

H {m}=XxnVb+o),
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2) X\V(b) g X\{m}, X\V(c) g X\{m}; and

3) XCVbneo).

Set F(Z) = ®. We shall denote AnngN by a. The above conditions
imply that

) V(@ + @) = {mj},
i) {m} g V(®y),{m} g V(P), and
iii) V(®y N D) = V(D,), where @y and @, are the same as in 3.3 (iii).

The Mayer-Vietoris sequence

Hyp, ' (N) — Hyy(N) — H, (N) & H, (N) — H, (N),
provides an isomorphism H{, (N) = Hg (N) @ Hg, (N). Recall that by 2.5(ii),
Hy, (N) = Hg(N) for all i >0. By the indecomposablity assumption on
HY(N) one of the direct summands, say th (N), has to be zero. Hence
HE(N) = H§ (N). By applying 2.7 to the system of ideals @ and {m*}, .y
we deduce

Min;N = {p € Ass;N : dimR/p = d and dimR/(aR + p)
=0 for all a € @, }.

This implies that V' (®.) = {m}, which contradicts the fact that {m} g
V(®,). Therefore Z N Supp(N)\ ¥ (m) is connected. O

Now, we state our last connectedness result.

Theorem 3.7. Let (R, m) denote a local ring and let N be a finitely generated R-
module with d = dim N such that MinRN consists of a single prime . Let Z be
a s.u.s. subset of Spec R such that H,(N) =0 for i=d—1,d. Then ZN
Supp N\{m} is a connected subset of Z N Supp N.

Proof. Let X = Z N Supp N. If X\{m} is disconnected, then there are ideals
b,c O AnngN satisfying the following conditions:

) {m}=xnVb+ec).

2) X\W(b) € X\{m}, X\F(0) € X\{m}, and
3) XCVbno).

Let ® = F(Z). Suppose @,, @, and @, are as in the proof of 3.6. As in
the proof of 3.6, we have the following Mayer-Vietoris sequence

HYTV(N) — H

m

(N) — Hg (N) @ Hg (N) — Hy(N).
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By our vanishing assumption on H5(N), it follows that H¢ (N) is embedded
in Hy (N) @ Hg, (N). Because X\V(c) < X\{m}, it follows that there is
(i,n) € I x N such that dimR/(a; + ¢*) > 0. This implies that dimR/(q; +
¢") R+ p > 0. Recall that Min;N = {p}. Consequently, H{ (N) =0, by the
generalized Lichtenbaum-Hartshorne vanishing theorem (see 2.8.).
Similarly Hg (N) = 0. Thus H{(N) = 0, which contradicts Grothen-
dieck’s non-vanishing theorem (see . Thcorem 614y, O
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